Dynamic Conflict-Free Colorings in the Plane

نویسندگان

  • Mark de Berg
  • Aleksandar Markovic
چکیده

We study dynamic conflict-free colorings in the plane, where the goal is to maintain a conflict-free coloring (CF-coloring for short) under insertions and deletions. First we consider CF-colorings of a set S of unit squares with respect to points. Our method maintains a CF-coloring that uses O(logn) colors at any time, where n is the current number of squares in S, at the cost of only O(logn) recolorings per insertion or deletion of a square.We generalize the method to rectangles whose sides have lengths in the range [1, c], where c is a fixed constant. Here the number of used colors becomes O(log2 n). The method also extends to arbitrary rectangles whose coordinates come from a fixed universe of size N , yielding O(log2 N log2 n) colors. The number of recolorings for both methods stays in O(logn). We then present a general framework to maintain a CF-coloring under insertions for sets of objects that admit a unimax coloring with a small number of colors in the static case. As an application we show how to maintain a CF-coloring with O(log3 n) colors for disks (or other objects with linear union complexity) with respect to points at the cost of O(logn) recolorings per insertion. We extend the framework to the fully-dynamic case when the static unimax coloring admits weak deletions. As an application we show how to maintain a CFcoloring with O( √ n log2 n) colors for points with respect to rectangles, at the cost of O(logn) recolorings per insertion and O(1) recolorings per deletion. These are the first results on fully-dynamic CF-colorings in the plane, and the first results for semi-dynamic CF-colorings for non-congruent objects. 1998 ACM Subject Classification F.2.2 Nonnumerical Algorithms and Problems

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Conflict-Free Colorings - Of Graphs and Hypergraphs - Diploma-Thesis of

Conflict-free colorings are known as vertex-colorings of hypergraphs. In such a coloring each hyperedge contains a vertex whose color is not assigned to any other vertex within this edge. In this thesis the notion of conflict-free colorings is translated to edge-colorings of graphs. For graphs G and H a conflict-free coloring of G ensures an edge of unique color in each copy of H in G. The mini...

متن کامل

Dynamic Stiffness Method for Free Vibration of Moderately Thick Functionally Graded Plates

In this study, a dynamic stiffness method for free vibration analysis of moderately thick function-ally graded material plates is developed. The elasticity modulus and mass density of the plate are assumed to vary according to a power-law distribution in terms of the volume fractions of the constituents whereas Poisson’s ratio is constant. Due to the variation of the elastic properties through ...

متن کامل

Graph Unique-Maximum and Conflict-Free Colorings

We investigate the relationship between two kinds of vertex colorings of graphs: uniquemaximum colorings and conflict-free colorings. In a unique-maximum coloring, the colors are ordered, and in every path of the graph the maximum color appears only once. In a conflict-free coloring, in every path of the graph there is a color that appears only once. We also study computational complexity aspec...

متن کامل

Conflict-free Colorings

Motivated by a frequency assignment problem in cellular telephone networks, Even et al. studied the following question. Given a set P of n points in general position in the plane, what is the smallest number of colors in a coloring of the elements of P with the property that any closed disk D with D ∩ P 6= ∅ has an element whose color is not assigned to any other element of D ∩ P . We refer to ...

متن کامل

Unique-Maximum and Conflict-Free Coloring for Hypergraphs and Tree Graphs

We investigate the relationship between two kinds of vertex colorings of hypergraphs: unique-maximum colorings and conflict-free colorings. In a unique-maximum coloring, the colors are ordered, and in every hyperedge of the hypergraph the maximum color in the hyperedge occurs in only one vertex of the hyperedge. In a conflict-free coloring, in every hyperedge of the hypergraph there exists a co...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017